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Observer Design for a Class of MIMO
Nonlinear Systems

Hao Lei, Jianfeng Wei and Wei Lin
Dept. of Electrical Engineering and Computer Science
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R. M. Kolacinski
Orbital Research,Inc.

Cleveland, OH44103
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Abstract— Under the boundedness and observability condi-
tions, we present a globally convergent observer for a class
of multi-output nonlinear systems which covers the block-
triangular observer forms studied previously in the literature.
The result presented in this paper incorporates and generalizes
the earlier work on the observer design for single-output
observable systems. Extensions to detectable systems and
controlled systems are also considered. Examples are given
to illustrated the validity of proposed method.

Index Terms— Nonlinear systems, dynamic high-gain ob-
servers, universal control, observability and detectability,
boundedness.

I. I NTRODUCTION

In this paper, we are interested in the problem of global
observer design for a multi-output nonlinear system in the
observable canonical form

ẋi1 = xi2

ẋi2 = xi3

...

ẋi,ki−1 = xi,ki
(1.1)

ẋi,ki
= fi(x), i = 1, 2, · · · , p

y =
(

y1, y2, · · · , yp

)T
=

(

x11, x21, · · · , xp1

)T

wherex = (x1, x2, · · · , xp)
T , xi = (xi1, xi2, · · · , xiki

)T ,
ki’s are suitable integers satisfying

∑p
i=1 ki = n. Without

loss of generality, suppose1 ≤ k1 ≤ k2 ≤ · · · ≤ kp ≤ n.
In [3], Gauthier and Bornard illustrated that under a

uniform observability condition, the autonomous system

ż = f(z)

y = h(z) (1.2)

is transformed into the canonical form (1.1) by the following
change of coordinates

x = Φ(z)

= (h1(z), · · · , Lk1

f h1(z); · · · ; hp(z), · · · , L
kp

f hp(z)))T

This work was supported in part by the NSF under grants DMS-0203387
and ECS-0400413, and in part by the AFRL Grant FA8650-05-M-3540.
Corresponding author: Professor Wei Lin. linwei@nonlinear.cwru.edu

wherez ∈ IRn andy ∈ IRp are the system state and output,
respectively. The vector fieldsf : IRn → IRn andh : IRn →
IRp are smooth, withn ≥ p ≥ 1.

For the autonomous system (1.2), a common approach for
the observer design is to find a change of coordinates and
an output injection so that (1.2) can be transformed into the
so-called observer form. The approach was first introduced
by Krener and Isidori [10] and Bestle and Zeitz [1], in the
single-output case (i.e.,p = 1), and then was generalized to
the multi-output case by Krener and Respondek [12], Xia
and Gao [21] and to discrete-time nonlinear systems by Lin
and Byrnes [18]. More recent extensions can be found in
the papers by Kazantzis and Kravvaris [7], and Krener and
Xiao [13].

The observer form based design method was further
extended by Rudolph and Zeitz [19] to multi-output au-
tonomous systems with a block triangular observer form,
which essentially requiresfi(x) in (1.1) to have certain
triangular structure. In the work [20], an explicit form
of nonlinear observer was presented by Shim et al. for a
class of multi-output multi-input (MIMO) nonlinear systems
in a block triangular form. However, it is required that
the bounds of the control inputs and system states be
known. The nonlinearities of the systems are assumed to be
Lipschitz with a known Lipschitz constant. In the paper by
Krener and Kang [11], a step-by-step, local observer design
method was developed for MIMO nonlinear control systems
which are also in a block-triangular form. An interesting
feature of the paper [11] is that the observer gains are
nonlinear functions of the estimated states and recursively
designed.

In this work, we consider the observer design for the
observable canonical form (1.1) whichdoes not have a
block-triangular structure,because the nonlinearitiesfi(·)’s
in (1.1) depend on the entire system states and all the sub-
blocks of system (1.1) are coupled each other. To remove the
block-triangular structure restriction in the previous work,
we make the following assumption in this paper.

Assumption 1.1: For every x(0) = x0 ∈ IRn, the
corresponding solution trajectoryx(x0, t) of the observable
system (1.1) uniquely exists and is globally bounded on
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[0, +∞). That is, there is an unknown constantC ≥ 0
depending on the initial conditionx0, such that

|xij(x0, t)| ≤ C, i = 1, · · · , p; j = 1, · · · , ki; ∀t ∈ [0,∞).
Assumption 1.1 is a mild condition for autonomous

systems (without control), because it covers an important
class of dynamic systems such as the Van der Pol equation
and Duffing oscillator [5], [13] — both of them areunstable
at the origin but nevertheless haveglobally boundedsolution
trajectories from any initial condition. On the other hand,
the boundedness condition excludes the class of nonlinear
systems with unbounded solutions or having a finite escape
time, and hence is somewhat restrictive. This is, however,
a trade-off for removing the block-triangular structure as-
sumption.

With the aid of Assumption 1.1, a universal-like global
observer can be designed for the multi-output autonomous
system (1.1). Following the spirit of our recent work [16],
we propose, in section II, an adaptive observer scheme
in which a delicate rescaling technique is employed to
deal with the inter-coupling termsfi(x)′s in (1.1) that
consist of the entire system states. Due to the lack of the
bound information of the solution trajectories, a saturation
technique [8] is used in the construction of multivariable
observers but the saturation threshold is tuned by a universal
control law instead of being a prescribed constant. As done
in the single-output case, the observer gain needs to be tuned
adaptively. As a result, the proposed observer is a dynamic
system with dimension ofn + 2.

In addition to the main result presented in section II, we
present in section III an extension of the global observer
design scheme for a class of detectable systems. In section
IV, the problem of global observer design is discussed for
a class of systems with control inputs. To illustrate the
validity of the results, two examples are given in section
V. Conclusions are drawn in section VI.

Due to the space limitation, the proofs of the main results
in the paper are omitted.

II. DYNAMIC HIGH-GAIN OBSERVERS FOR

OBSERVABLE SYSTEMS

In this section, we will propose a constructive observer
design scheme for the globally observable system (1.2)
which satisfies the Assumption 1.1.

To introduce the main result, we first recall the definition
of a unit saturation function.

Definition 2.1: A unit saturation function sat(s) is
defined as

sat(s) =







1 if s > 1
s if |s| ≤ 1
−1 if s < −1

(2.1)

From the definition, it is not difficult to show that
Lemma 2.2: Given real numberss1, s2 and m > 0,

suppose that|s1| ≤ m. Then,

|s1 − msat(
s2

m
)| ≤ |s1 − s2|. (2.2)

For any x ∈ IRn and m > 0, define mappingsatm :
IRn → [−m, m]n as

satm(x) :=
(

msat(
x1

m
), msat(

x2

m
), · · · , msat(

xn

m
)
)

Now, we are ready to state the main theorem of the paper.
Theorem 2.3:For the multi-output system in observer

canonical form (1.1), suppose the Assumption 1.1 holds.
Then, there exists a global observer. In particular, a globally
convergent observer can be constructed as

˙̂xi1 = x̂i2 + (MN)ai1(yi − x̂i1)
˙̂xi2 = x̂i3 + (MN)2ai2(yi − x̂i1)

...
˙̂xi,ki−1 = x̂i,ki

+ (MN)ki−1ai,ki−1(yi − x̂i1)

˙̂xi,ki
= fi

(

satN (x̂)
)

+ (MN)kiai,ki
(yi − x̂i1)

Ṅ = γ

p
∑

i=1

( yi − x̂i1

(MN)kp−ki+1

)2

, N(0) = 1

Ṁ = −M + ∆(N), M(0) = 1 (2.3)

where aij > 0, i = 1, · · · , p, j = 1, · · · , ki are the
coefficients of the Hurwitz polynomialspi(s) = ski +
∑ki

j=1 aijs
ki−j , γ ≥ 1 is a prescribed constant, and

∆(N) ≥ 1 is a smooth function which can be determined
explicitly.

Moreover, all the states of the closed-loop system (1.1)-
(2.3) are well-defined and bounded on[0,∞), and,

lim
t→∞

[x(x0, t) − x̂(x̂0, t)] = 0, ∀(x0, x̂0) ∈ IRn × IRn.

Remark 2.4: (2.3) is a universal-like high-gain observer
that is motivated by the works [22], [6] and [15]. Different
from the traditional high-gain observer [4] [9], the observer
gain of (2.3) is composed of two parts. One is the moving
saturation level N(t) which needs to be tuned in a manner
similar to the one in [15], [16]. The other one isM(t),
which is used to recover the offset offi(satN (x̂)) from
fi(x), to be updated through a linear ODE driven by
a nonlinear function ofN(t). The introduction of non-
constant gainsN(t) andM(t) enables us to deal with issue
of the unknown boundof the solution trajectories of the
observable system (1.1) or (1.2).

It should be mentioned that∆(N) in the observer (2.3)
can be calculated directly based on the observable system
(1.1), in particular, by the nonlinear functionsfi(x)’s. To
make this point clear, we introduce the following technical
lemma.

Lemma 2.5: (Refer to [17]) Letg : IRn → IR be aC1

real-valued function. Then, there exist two smooth functions
α, β : [0, +∞) → [1, +∞), such that∀x, z ∈ IRn,

|g(x) − g(z)| ≤ α(||x||)β(||z||)

n
∑

i=1

|xi − zi|. (2.4)

Using the inequality (2.4),
∣

∣fi(x) − fi(satN (x̂))
∣

∣ can
be estimated as follows. By Assumption 1,||x(x0, t)|| ≤
C, ∀t ≥ 0. Since||satN (x̂)|| ≤ N , by Lemma 2.5, for each

2



i = 1, 2, · · · , p, there exist two smooth positive functions
αi(·) andβi(·) such that

∣

∣fi(x) − fi(satN (x̂))
∣

∣

≤ αi(C)βi(N)

p
∑

i=1

ki
∑

j=1

∣

∣xij − Nsat(
x̂ij

N
)
∣

∣ (2.5)

Denoteα(C) =
∑p

i=1 αi(C), β(N) =
∑p

i=1 βi(N), then
one can simply choose

∆(N) = β2(N) ≥ 1. (2.6)

In the next subsection, it will be shown that such a choice
of ∆(N) suffices to ensure the dynamic system (2.3) being
a globally convergent observer of system (1.1).

To sum up, a global observer for the observable system
(1.1) with bounded solution trajectories can be constructed
in three steps:

Step 1. Pick a suitableγ > 0 and choose constants
aij > 0, i = 1, · · · , p, j = 1, 2, · · · , ki, such thatpi(s) =

ski +
∑ki−1

j=1 aijs
ki−j is Hurwitz;

Step 2. Use inequality (2.5) to estimate
∣

∣fi(x) −
fi(satN (x̂))

∣

∣ and findβ(N) ≥ 1. Then, compute∆(N) =
β2(N);

Step 3. With the obtained parametersγ, aij ’s and
∆(N), design the observer (2.3).

Remark 2.6: It is worth pointing out that the dynamic
update law ofM can be modified asṀ = −σM +
∆(N), σ > 0, ∆(N) ≥ σ without affecting the argument
in the above proof. A biggerσ makes the convergence of
M faster and the gainL = MN smaller, however, the
convergence of the estimation slower.

Using Theorem 2.3, it is easy to obtain a corollary which
is devoted to the design of a global observer for observable
systems in a lower-triangular form:

żi1 = zi2 + fi1(z1)

żi2 = zi3 + fi2(z1, z2)

... (2.7)

żi,ki−1 = zi,ki
+ fi,ki−1(z1, z2, · · · , zki−1)

żi,ki
= fi,ki

(z)

y = z1

where 1 < k1 ≤ · · · ≤ kp and
∑p

i=1 ki = n,
zi = (z1i, z2i, · · · , zp,i)

T , if 1 ≤ i ≤ k1; zi =
(zli, z2i, · · · , zp,i)

T , if kl < i ≤ kp, l = 1, · · · , p − 1; z =
(z1 · · · , zkp

) are states andy = z1 = (z11, z21, · · · , zp1)
T ∈

IRp are the outputs.fij(·), i = 1, · · · , p, j = 1, · · · , ki are
smooth functions withfij(0, · · · , 0) = 0.

Due to the lower-triangular structure, one can explicitly
construct a global change of coordinatesx = Ψ(z) which
renders system (2.7) globally diffeomorphic to system (1.1).
As a consequence, we have the following conclusion.

Corollary 2.7: Assume that all the solution trajectories
of the lower-triangular system (2.7) from any initial con-
dition are well-defined and bounded on[0, +∞). Then, a

globally convergent observer exists and can be explicitly
constructed.

III. G LOBAL OBSERVERDESIGN FORDETECTABLE

SYSTEMS

This section is devoted to the design of global observers
for a class of detectable nonlinear systems. Consider a class
of autonomous systems of the form

η̇ = Auη + Ψ(y)

ẋi1 = xi2

...

ẋi,ki−1 = xi,ki
(3.1)

ẋi,ki
= fi(x), i = 1, 2, · · · , p

y = (y1, y2, · · · , yp)
T = (x11, x21, · · · , xp1)

T

whereη ∈ IRn−r andx ∈ IRr are the system states,y ∈ IRp

are the outputs, and1 < k1 ≤ k2 ≤ · · · ≤ kp,
∑p

i=1 ki =
r, Ψ(y) is a continuous function andfi(·)’s are a smooth
functions vanishing at origin.

Clearly, the stateη ∈ IRn−r is unobservable from the
outputy. This is becauseη has no influence on the system
output. However, if the matrixAu is Hurwitz, one can still
design a global observer for the autonomous system (3.1)
under the condition that thex-subsystem is bounded.

Theorem 3.1: Suppose thex-subsystem of (3.1) satisfies
the bounded assumption in the sense of Assumption 1.1,
and Au is a Hurwitz matrix. Then, a global observer can
be constructed for the system (3.1) in the following way:

˙̂η = Auη̂ + Ψ(y)
˙̂xi1 = x̂i2 + (MN)ai1(yi − x̂i1)

...
˙̂xi,ki−1 = x̂i,ki

+ (MN)ki−1ai,ki−1(yi − x̂i1)

˙̂xi,ki
= fi

(

satN (x̂)
)

+ (MN)kiai,ki
(yi − x̂i1)

Ṅ = γ

p
∑

i=1

( yi − x̂i1

(MN)kp−ki+1

)2

, N(0) = 1

Ṁ = −M + ∆(N), M(0) = 1 (3.2)

where aij > 0, i = 1, · · · , p, j = 1, · · · , ki are the
coefficients of the Hurwitz polynomialshi(s) = ski +
∑ki

j=1 aijs
ki−j , γ ≥ 1 is a prescribed constant.

The observer (3.2) guarantees that all the states of the
closed-loop system (3.1)-(3.2) are well-defined and bounded
on [0,∞). In addition, limt→∞[η(η0, t) − η̂(η0, t)] =
0, limt→∞[x(x0, t) − x̂(x̂0, t)] = 0, ∀(η0, x0) ∈
Rn, (η̂0, x̂0) ∈ IRn.

Remark 3.2: Theorem 3.1 suggests that, in terms of ob-
serverdesign, the observability is not a necessary condition.
This is similar to the linear case, i.e., an unobservable yet
detectable system still permits the existence of an observer.

Remark 3.3: Theorem 3.1 remains true if the unobserv-
able sub-system is replaced by

η̇ = ϕ(y)(Auη̂ + Ψ(y)), ϕ(y) > 0. (3.3)
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In this case, one can still design a global observer using a
manner similar to the one suggested in Theorem 3.1, with
a slight modification.

IV. OBSERVERS FOR A CLASS OFNONLINEAR

SYSTEMS WITH CONTROL INPUTS

We now discuss briefly the observer design problem for
the following multi-output multi-input (MIMO) nonlinear
system

ẋi1 = xi2 + gi1(y, u)

ẋi2 = xi3 + gi2(x, u)

...

ẋi,ki−1 = xi,ki
+ gi,ki−1(x, u)

ẋi,ki
= fi(x) + gi,ki

(x, u)

y = (x11, x21, · · · , xp1)
T (4.1)

where xi = (xi1, xi2, · · · , xi,ki
)T , x = (x1, · · · , xp)

T ∈
IRn, u ∈ IRm andy ∈ IRp are the system state, input and
output, respectively,k1 ≤ k2 ≤ · · · ≤ kp,

∑p
i=1 ki = n.

The functionsgi,j(·) andfi(·) are smooth withgi,j(0, 0) =
0 andfi(0) = 0.

We assume that the functiongij(x, u) := gij(y, x, u),
with x = (yT , xT )T and x = col(xij , i = 1, · · · , p; j =
2, · · · , ki) ∈ Rn−p, satisfies the following condition.

Assumption 4.1: For i = 1, · · · , p andj = 2, · · · , ki,

|gij(y, x, u) − gij(y, x̂, u)| ≤ c(x, u)
(

i
∑

s=1

j
∑

l=2

|xsl − x̂sl|
)

where x̂ = col(x̂ij , i = 1, · · · , p; j = 2, · · · , ki) ∈ IRn−p,
andc(·, ·) ≥ 0 is a smooth function.

Assumption 4.2: For any control inputu(t) in the
compact setU ⊂ IRm and any initial conditionx0 ∈
IRn, the corresponding solution trajectoryxu(x0, t) of the
controlled system (4.1) is well-defined over the interval
[0, +∞) andxu(x0, t) is globally bounded, i.e.

||xu(x0, t)|| ≤ C.

• In [20], a nonlinear observer was presented for a class
of MIMO nonlinear systems. The system studied there
is of a block triangular form. Moreover, it is required
that the bounds of the system input and state be known.
The system nonlinearities are assumed to satisfy a
Lipschitz condition with a known Lipschitz constant.

• In [11], a step-by-step local observer design method
was proposed for a class of multi-input multi-output
nonlinear control systems. The systems under consid-
eration are also in a block-triangular form, and the
observer gains are nonlinear functions of the estimated
states. Due to the local design feature, the boundedness
condition is automatically satisfied.

• Assumption 4.2 basically requires that all the solution
trajectories do not blow up under bounded control.
It contains, for instance, bounded-input/bounded-state
(BIBS) systems. It should be noticed that a key feature

of the proposed observer does not need the bound
information of the solution trajectories.

Under the two assumptions above, we can design a global
observer for the MIMO system (4.1) by following the spirit
of observer design method in section II.

Theorem 4.3: For the MIMO nonlinear control system
(4.1), suppose Assumptions 4.1 and 4.2 hold. Then, a global
observer can be designed for the controlled systems (4.1)
as

˙̂xi1 = x̂i2 + (MN)ai1(yi − x̂i1) + gi1(y, u)
˙̂xi2 = x̂i3 + (MN)2ai2(yi − x̂i1) + gi2(y, x̂, u)

...
˙̂xi,ki

= fi

(

satN (x̂)
)

+ (MN)kiai,ki
(yi − x̂i1)

+gn(y, x̂, u)

Ṅ = γ

p
∑

i=1

( yi − x̂i1

(MN)kp−ki+1

)2

, N(0) = 1

Ṁ = −M + ∆(N), M(0) = 1 (4.2)

where aij > 0, i = 1, · · · , p, j = 1, · · · , ki are the coef-
ficients of the Hurwitz polynomialsski +

∑ki

j=1 aijs
ki−j ,

γ ≥ 1 is a prescribed constant, and∆(N) ≥ 1 is a smooth
function which can be determined explicitly. Moreover, all
the states of the closed-loop system (4.1)-(4.2) are well-
defined and bounded on[0,∞). In addition,

lim
t→∞

[x(x0, t) − x̂(x̂0, t)] = 0, ∀(x0, x̂0) ∈ IRn × IRn.

The proof of this theorem can be carried out by modifying
suitably the argument of Theorem 2.3. The boundedness
property ofx andu has to be used, but the bound can be
unknown.

V. EXAMPLES AND SIMULATIONS

In this section, we give two examples to illustrate the
applications of the observer design methods proposed in
this paper.

Example 5.1:Consider the two-output observable au-
tonomous systems

ẋ11 = x12

ẋ12 = −x11 − x3
12 + x23 + x3

21

ẋ21 = x22

ẋ22 = x23 (5.1)

ẋ23 = −3x2
21x22 − x22 − x12

y = (y1, y2)
T = (x11, x21)

T

This system is of the form (1.1). Choosing Lyapunov
functionV (x) = 1

2
[x2

11 +x2
12 + 1

2
x4

21 +x2
22 +(x3

21 +x23)
2],

one can see that the derivative ofV (x) along the trajectories
of (5.1) satisfiesV̇ = −x4

12 ≤ 0, which implies that the
system is stable but not asymptotically stable. Hence, all
the solutions trajectories of (5.1) are globally bounded, and
the design method proposed in Theorem 2.3 can be applied.

To find the function∆(N), we first computeβ1(N) and
β2(N) from f1(x) = −x11 − x3

12 +x23 +x3
21 andf2(x) =

4



−3x2
21x22 − x22 − x12. By the mean value theorem, there

is a ξ ∈ IR5 betweenx and satN (x̂), such that

|f1(x) − f1(satN (x̂))|

= |

2
∑

i=1

∂f1

∂ξ1i

(ξ)(x1i − Nsat(
x̂1i

N
))

+

3
∑

i=1

∂f1

∂ξ2i

(ξ)(x2i − Nsat(
x̂2i

N
)|

≤ (2 + 3ξ2
12 + 3ξ2

21) ·
(

2
∑

i=1

|x1i − Nsat(
x̂1i

N
)|

+

3
∑

i=1

|x2i − Nsat(
x̂2i

N
)|
)

≤ (4 + 6(C + N)2) ·
(

2
∑

i=1

|x1i − Nsat(
x̂1i

N
)|

+

3
∑

i=1

|x2i − Nsat(
x̂2i

N
)|
)

≤ 6(C2 + 1)(N2 + 1)
(

2
∑

i=1

|x1i − Nsat(
x̂1i

N
)|

+

3
∑

i=1

|x2i − Nsat(
x̂2i

N
)|
)

.

Thus,β1(N) = N2 + 1.
Similarly, it is deduced fromf2(x) thatβ2(N) = N2+1.

Hence,β(N) = β1(N) + β2(N) = 2N2 + 2 and∆(N) =
β2(N) = 4(N2 + 1)2. Choosea11 = a12 = a21 = a23 =
1, a22 = 3, γ = 8. Then, the observer for the autonomous
system (5.1) can be designed as

˙̂x11 = x̂12 + MN(x11 − x̂11)

˙̂x12 = −Nsat(
x̂11

N
) − N3sat3(

x̂12

N
) + Nsat(

x̂23

N
)

+N3sat3(
x̂21

N
) + M2N2(x11 − x̂11)

˙̂x21 = x̂22 + MN(x21 − x̂21)
˙̂x22 = x̂23 + 3M2N2(x21 − x̂21)

˙̂x23 = −3N3sat2(
x̂21

N
)sat(

x̂22

N
) − Nsat(

x̂21

N
)

−Nsat(
x̂12

N
) + M3N3(x21 − x̂21)

Ṅ =
8

M4N4

(

(x11 − x̂11)
2 + M2N2(x21 − x̂21)

2
)

Ṁ = −M + 4(N2 + 1)2 (5.2)

N(0) = 1, M(0) = 1

Fig. 1 illustrates the transient response of the observer
(5.2) and the system (5.1) starting from the initial con-
ditions (x0

11, x
0
12, x

0
21, x

0
22, x

0
23, x̂

0
11, x̂

0
12, x̂

0
21, x̂

0
22, x̂

0
23) =

(2, 2, 2,−2, 4, 3, 1, 1,−2, 2).
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Fig. 1. Observation of a 5-dimension 2-output system
Example 5.2:Consider the observation of a point-mass

satellite model (see, for instance, [2]):

ρ̇ = v

v̇ = ρω2 − θ1

1

ρ2
+ θ2u1

φ̇ = ω (5.3)

ω̇ = −
1

ρ
(2vω + θ2u2)

in which (ρ, φ) denotes the position of the satellite in polar
coordinates on the plane,v is the radial velocity,ω is the
angular velocity andu1, u2 are the radial and tangential
thrust, respectively. We assume that the measurable signals
are

y1 = ρ, y2 = φ.

Consider the case when the parametersθ1 = 4 andθ2 =
1, while the control inputsu1 = 4/ρ2 − ρ− v andu2 = φ

ρ
.

Then, it is easy to verify that the system states are globally
bounded, by using the Lyapunov functionV = 1

2
(ρ2 +v2 +

φ2 + ρ2ω2) whose derivative isV̇ = −v2 ≤ 0. The state
trajectories of the closed-loop system are shown in Fig. 2.
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Fig. 2. State trajectories of point-mass satellite model
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For the closed-loop system, we can design a global
observer of the form

˙̂ρ = v̂ + 6MN(ρ− ρ̂), ρ̂(0) > 0

˙̂v = N3sat(
ρ̂

N
)sat2(

ω̂

N
) − Nsat(

ρ̂

N
) − Nsat(

v̂

N
)

+9(MN)2(ρ − ρ̂)
˙̂
φ = ω̂ + MN(φ − φ̂)

˙̂ω = −
1

Nsat( ρ̂
N

)

(

2N2sat(
v̂

N
)sat(

ω̂

N
) +

sat( φ̂
N

)

sat( ρ̂
N

)

)

+(MN)2(φ − φ̂)

Ṅ =
5

(MN)
2

(

(ρ − ρ̂)2 + (φ − φ̂)2
)

, N(0) = 1

Ṁ = −M + (N2 + 1)2, M(0) = 1 (5.4)

Figure 3 illustrates the simulation results of the
closed-loop system and the observer (5.4) starting from
the initial conditions (ρ0, v0, φ0, ω0, ρ̂0, v̂0, φ̂0, ω̂0) =
(2,−1, 3, 1, 4, 2, 1, 2)

0 1 2 3 4
0.5

1

1.5

2

2.5

3

3.5

4

0 1 2 3 4
−5

−4

−3

−2

−1

0

1

2

0 1 2 3 4
0

1

2

3

4

0 1 2 3 4
−4

−2

0

2

4

6

8

∧  
ρ 

ρ ∧  
v 

v 

∧  
φ 

φ 

∧  ω 

ω 

Fig. 3. Observation of point-mass satellite model

VI. CONCLUSIONS

Under the global boundedness and observability condi-
tions, we have shown that a globally convergent observer
can be explicitly designed for the multi-output autonomous
system (1.1) or (1.2) without requiring a block-triangular
structure nor imposing restrictions on the coupling relations
between each sub-block. The constructed observer is of
high-gain type but different from the traditional one [9]
in the sense that the observer gains here are composed of
two time-varying componentsM(t) andN(t), both of them
must be adaptively updated in order to deal with the issue
of the unknown bound of the solution trajectories. The gain
update law is reminiscent from the recent work [15] on
universal output feedback control of nonlinear systems with
unknown parameters. It was also showed that the proposed
observer design technique can be extended to a class of
detectable systems and multi-input/multi-output (MIMO)
nonlinear systems with bounded solution trajectories, such
as bounded-input/bounded-state (BIBS) systems.
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